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1 Limits
1.1 Evaluating a Classical Limit
Evaluate limn→∞ 1− n

n2−1 using arithmetic of limits.

We recall the “Squeeze Theorem”, which states: Let I be an interval having the point a as a limit
point. Let f, g and h be functions defined on I, except possibly at a itself. Suppose that for every
x ∈ I not equal to a, we have:

g(x) ≤ f(x) ≤ h(x) and lim
x→a

g(x) = lim
x→a

h(x) = L

then, limx→a f(x) = L.

Thus, let ξ(n) = 1 and f(n) = n
n2−1 , then limn→∞(1− n

n2−1 ) = limn→∞(ξ(n))− limn→∞ f(n). We
now note if ℵ = (n − 1)(n + 1), then f(n) < f(n) + 1

ℵ and f(n) > f(n) − 1
ℵ (∀ n > 1). Therefore

if we have h(x) = f(n) + 1
ℵ = 1

n−1 and g(x) = f(n) − 1
ℵ = 1

n+1 , then by the squeeze theorem
limn→∞ f(n) = 0 since limn→∞ g(n) = limn→∞ h(n). Thus, we may conclude:

lim
n→∞

(
1− n

n2 − 1

)
= lim
n→∞

ξ(n) = 1

Another approach to this problem would be as follows. We recall limn→∞
1
n = 0. Then, by the

standard arithmetic of limits:

lim
n→∞

(1− n

n2 − 1) = lim
n→∞

(1)− lim
n→∞

n

n2 − 1 = 1−
limn→∞ n 1

n2

limn→∞(n2 − 1) 1
n2

= 1−
limn→∞( 1

n )
limn→∞(1− 1

n2 )

= 1− 0
limn→∞(1)− limn→∞( 1

n ) limn→∞( 1
n )

= 1− 0
1− (0)(0) = 1

1.2 Convergent Sequences
Define a real sequence (xn) by x1 = 0 and xn+1 = 1

4(1−xn) for n ≥ 1. Show that (xn) is convergent,
and find the limit.

Proof. Let us begin by noting the first 11 terms of xn as xn = {0, 1
4 ,

1
3 ,

3
8 ,

2
5 ,

5
12 ,

3
7 ,

7
16 ,

4
9 ,

9
10 ,

5
11 , . . . }.

Thus, a quick glance at this list looks like there might exist a direct formula for all xn’s not dependant
on xn. We claim that:

∀n = 2k + 1, k ∈ N, x2k+1 = k

2k + 1 , and ∀n = 2k, k ∈ N, x2k = 2k − 1
4k , and x1 = 0

Our formulas cover xn∀n. Therefore, our plan is to perform induction on both formulas, to prove
correct description, then compute the limits.
For n = 2k + 1, we note x2(1)+1 = 1

3 = 1
2(1)+1 . Next, we assume for n = 2k + 1, x2k+1 = k

2k+1 , then
for n = 2(k + 1) + 1 = 2k + 3 = n+ 2,

xn+2 = 1
4(1− 1

4(1−xn) )
= 1

4(1− 1
4(1− k

2k+1 ) )
= 1

4−
( 1

( k+1
2k+1 )

) = 1
( 4k+4−2k−1

k+1 )
= (k + 1)

2(k + 1) + 1
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Which is our formula for x2(k+1)+1.

Now, for n = 2k + 1, we note x2(1) = 1
4 = 2(1)−1

4(1) . Next, we assume for n = 2k, x2k = 2k−1
4k , then for

n = 2(k + 1) = 2k + 2 = n+ 2,

xn+2 = 1
4(1− 1

4(1−xn) )
= 1

4(1− 1
4(1− 2k−1

4k ) )
= 1

4− ( 4k
2k+1 )

= 1
( 4k+4

2k+1 )
= 1

( 4(k+1)
2(k+1)−1 )

= 2(k + 1)− 1
4(k + 1)

Which is our formula for x2(k+1).

Now, we want to show limn→∞ xn = limn→∞
k

2k+1 = limn→∞
2k−1

4k (< ∞). We claim L = 1
2 is the

limit of all these sequences. To check, given ε > 0, let N > 1
4 ( 1

ε − 2). Thus ∀k > N ,

| k

2k + 1 −
1
2 | =

1
2 −

k

2k + 1 ≤
1
2 −

N

2N + 1 <
1
2 −

1
4 ( 1

ε − 2)
( 1
ε − 1) + 1

= 1
2 −

1−2ε
4ε
1
2ε

= 1
2 − (1

2 − ε) = ε

since if 0 < x
y < 1, then x−1

y−1 <
x
y . Now similarly but with N > 1

4ε ,

|2k − 1
4k − 1

2 | =
1
2 −

2k − 1
4k ≤ 1

2 −
2N − 1

4N <
1
2 −

2( 1
4ε )− 1
4( 1

4ε )
= 1

2 − (1
2 − ε) = ε

Therefore, xn → 1
2 as n→∞.

1.3 A Nice Property of Limits
Let (xn) be a sequence of real numbers that converges to x, and let a, b ∈ R.

1. Show that, if xn ≤ b for every n ∈ N, then x ≤ b. What can you conclude if xn < b for every
n ∈ N?

2. Deduce from (1) that, if xn ≥ a for every n ∈ N, then x ≥ a.

1. Proof. *** (Insufficient proof for 1., need to approach from different perspective, need to better
define the leap from limn→∞(xn − bn) ≤ 0 =⇒ x ≤ b).
Let us define bn = b ∀n. Then limn→∞ xn − limn→∞ bn = limn→∞(xn − bn) ≤ 0 since
xn ≤ bn∀n. Therefore, limn→∞ xn ≤ limn→∞ bn ≡ x ≤ b. One might think that the added
information that xn < b∀n =⇒ x < b. However, consider the case where xn = 1− 1

n and b = 1.
We note this sequence and b satisfy our conditions xn < b∀n. However, limn→∞ xn = 1 = b.
Therefore, we must conclude that since xn < b is stronger than xn ≤ b, but doesn’t add any
additional information for cases such as the one we just provided, that both conditions are
sufficiently equivalent for our conclusion about x ≤ b.

2. Let us consider yn = −xn, where limn→∞ yn = y and a = −b. We note if xn ≤ b ∀n, then
−yn ≤ −a =⇒ yn ≥ a ∀n. Thus, by the completeness of R, we may conclude that ∀ series
yn → y as n→∞ where yn ≥ a ∀n =⇒ y ≥ a from our findings in (1).
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2 Sets
2.1 Set Addition
Let S and T be nonempty subsets of R that are both bounded above. Prove that the set S + T =
{s+ t|s ∈ S, t ∈ T} has sup(S + T ) = supS + supT .

Proof. Let us consider 4 cases:

• First, assume s0 = sup(S), s0 ∈ S and t0 = sup(S), t0 ∈ T . Therefore, given t, and since
S + T ∈ R, the maximum value S + T could take would be so + t, and similarly for a case
given s. Therefore, max(s+ t) = s0 + t0 ≡ sup(S) + sup(T ).

• Second, let us consider the case where both sup(S) sup(T ) 6∈ S and T respectively. Therefore,
lims→sup(S) s = sup(S) = s0, and similarly for t. Therefore, given t, and since S + T ∈ R,
the sup(S + t) would be lims→sup(S) s + t = s0 + t, and similarly for a case given s. Thus,
sup(S + T ) = s0 + t0 ≡ sup(S) + sup(T ).

• The third and fourth cases are symmetric, therefore, WLOG, assume lims→sup(S) s = sup(S) =
s0, s0 6∈ S, but sup(T ) = t0 and t0 ∈ T . We combine the previous two cases together to find
the supremum of S+T given one variable being constant, which yields sup(S+T ) = s0 + t0 =
sup(S) + sup(T ).

Since all possible cases give the case where sup(S + T ) = sup(S) + sup(T ), we can conclude what
we wanted to show.

2.2 Proof of the Existence of a Convergence Sequence of elements of a
set to its Infimum

Prove that, if S is a nonempty subset of R that is bounded below, then there is a monotone decreasing
sequence of elements of S that converges to inf S.

Proof. Let us define Br(x) = {x ∈ R : x < r}. Therefore, we have two cases:

• ∃t > 0 s.t. ∀r < t,Br(inf(S)) = inf(S)

• @t > 0 s.t. ∀r < t,Br(inf(S)) = inf(S)

In the first case, our condition implies inf(S) ∈ S. To prove this assume inf(S) 6∈ S. Therefore,
∀ε > 0,∃s ∈ S s.t. |s − inf(S)| < ε. This is a contradiction since our first case tells us for
some t > 0 @ any points other than possibly inf(S) in S and in an open ball around inf(S).
Thus, if the first condition holds, we define our monotone decreasing sequence as the constant
sequence xn = inf(S).

For the second case, if inf(S) ∈ S, we let xn = inf(S) ∀n. Otherwise, take r1 = t where t is the
first such radius where ∀x ∈ Br1(inf(S)) to the right of inf(S) x ∈ S, unless S = (inf(S),∞)
in which we take r1 = 1. For example, if S = ∪∞m=0(m,m + 1

2 ], then r1 = 1
2 . With r1,

we take rn+1 = rn

2 ∀n ∈ N where r1 = t as defined before. Then, we take the sequence
yn = sup(Brn(inf(S))) which must converge to inf(S) since our ball’s radius is shrinking to 0
around inf(S), and yn ∈ S ∀n, thus yn satisfies the conditions of a sequence we were looking
for.
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3 Convergent Sums
3.1 Proving Absolute Convergence
Suppose that (an) is a sequence of positive real numbers with limn→∞ |an+1

an
| = s < 1. Show that∑

an is absolutely convergent. Deduce that
∑

xn

n! converges for every x ∈ R.

Proof. Let us define r = s+1
2 . By the completeness of R and how s < 1 =⇒ s < r < 1. It follows

that if limn→∞ |an+1
an
| = s < 1, then by definition, ∀ε > 0 ∃N ∈ N s.t. |an+1

an
− s| < ε ∀n > N =⇒

|an+1| < r|an| ∀n > N,N ∈ N. Therefore, |an+i| < r|an+i−1| < · · · < ri|an| ∀i > 0, i ∈ N. As such,

∞∑
i=N+1

|ai| =
∞∑
i=1
|aN+i| <

∞∑
i=1

ri|aN+1| = |aN+1|
∞∑
i=1

ri = |aN+1|
r

1− r <∞ since r < 1

Therefore,
∑
an is absolutely convergent.

Proof. As for showing
∑

xn

n! =
∑
an converges for every x ∈ R. We prove that ∀n > k, limn→∞

|an+1
an
| = s < 1 since ∀n > k

kn

(n)! = (k
k

k! )( k

k + 1) . . . (k
n

) < (k
k

k! )(k
n

) < (k
k

k! ) = ak

and ∀m ≥ n, am+1 satisfies:

km+1

(m+ 1)! = ( k

m+ 1)(k
m

m! ) < (k
m

m! ) = am ≤ (k
k

k! ) = ak

This =⇒ limn→∞ |an+1
an
| = s < 1. The fact that

∑
an converges now follows from our previous

findings.

4 Continuity
Let us first recall the Intermediate Value Theorem to be used heavily in the next few questions:

Theorem. 4.1: The Intermediate Value Theorem on R

If f is a real valued continuous function on [a, b] s.t. f(a) < f(b), then ∀y ∈ [f(a), f(b)], ∃x ∈
[a, b] s.t. f(x) = y.

4.1 Proving Uniform Continuity Example
Show that the function f : [0,∞)→ R, f(x) = x2 is not uniformly continuous.

Proof. We recall that a function is uniformly continuous from S ⊆ Rn into Rm if ∀ε > 0 ∃δ > 0
s.t. ||f(x) − f(a)|| < ε when ||x − a|| < δ, x,a ∈ S. Therefore, given ε = 1 suppose there exists

5



δ > 0 s.t. the δ satisfies our definition of uniform continuity. However, if we consider the sequence
xn = n, an = n+ 1

n :

|f(xn)− f(an)| = (n+ 1
n

)2 − n2 = 2 + 1
n2

Therefore, ∀δ > 0, ∃n ∈ N s.t. 1
n < δ, which =⇒ |xn − an| = |n − n − 1

n | = 1
n < δ, but

|f(xn) − f(an)| > 2 > ε. Thus, we can now conclude f on the domain S = [0,∞) is not uniformly
continuous.

4.2 Continuous and Differentiable Proof
Suppose that f : [0,∞) → R is continuous on [0,∞) and differentiable on (1,∞) with bounded
derivative. Show that f is uniformly continuous. (HINT: split [0,∞) into two pieces, on each of
which f is uniformly continuous, then explain why this implies that f is uniformly continuous on
the whole of [0,∞).)

Proof. We split the domain of [0,∞) into two sets:

1. We first consider f under the interval [0, 1], which must be uniformly continuous since the
domain is compact and f is continuous (Theorem 5.5.9)

2. We now consider f under the domain (1,∞). Since f is continuous and has a bounded deriva-
tive under this domain, we know ∃c ∈ (1,∞) s.t. f ′(c) ≥ |f(x2)−f(x1)|

|x2−x1| ∀x1, x2 ∈ (1,∞) =⇒
|f(x2)− f(x1)| ≤ f ′(c)|x2 − x1| and hence f under (1,∞) is Lipschitz. We now recall that all
Lipschitz functions are also uniformly continuous (Prop. 5.5.4) and hence f under (1,∞) is
uniformly continuous.

Since we have shown uniform continuity under the two domains, we must show uniform continuity
under the union. Thus, choose δ1, δ2 s.t. ∀y ∈ (1,∞), x ∈ [0, 1], having |1 − y| < δ1 =⇒ |f(1) −
f(x)| < ε

2 and |x− 1| < δ2 =⇒ |f(y)− f(1)| < ε
2 and hence |f(y)− f(x)| ≤ |f(1)− f(x)|+ |f(y)−

f(1)| < ε
2 + ε

2 < ε when δ = max(δ1, δ2). Therefore, all of [0,∞) is uniformly continuous.

4.3 Proving Uniform Continuity
Suppose that f : R→ R is continuous and satisfies f(x+1) = f(x)∀x ∈ R. Show that f is uniformly
continuous.

Proof. We first note under the domain [0, 1], f will be uniformly continuous since under compact
domains, a continuous function is uniformly continuous (Theorem 5.5.9). Thus, ∀x, y ∈ R, WLOG
y > x we have |f(y)− f(x)| ≤ |f(y)− f(y− 1)|+ |f(y− 1)− f(y− 2)|+ · · ·+ |f(y−n)− f(x)| where
y − n ≤ x+ 1, and hence |f(y)− f(x)| ≤ |f(y − n)− f(x)| since |f(z)− f(z − 1)| = 0 by definition
of f .

Thus, we now note the uniform continuity we established under [0, 1] may be generalized to all of R
since once we note any |f(y) − f(x)| ≤ |f(y − n) − f(x)| where y − n ≤ x + 1, we may then push
both y−n and x down to elements of [0, 2]. since |f(y−n)− f(x)| = f(y−n−k)− f(x−k) ∀k ∈ N
and requiring . Thus, all that needs to be done is to extend our domain of uniform continuity by 1.
Quite trivially, we note our findings of why f under [1− ε, 2− ε] (ε ∈ [0, 1]) or [1, 2] is also uniformly
continuous (by compactness and continuity), and hence f under [0, 2] is uniformly continuous. Thus,
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if we require x−k ∈ [0, 1] we have all the tools to now conclude that R is uniformly continuous since
∀x, y ∈ R |f(y)− f(x)| ≡ |f(z2)− f(z1)|, z1, z2 ∈ [0, 2] and z2 ≤ z1 + 1.

4.4 Surjectivity
Suppose that f : R → [0,∞) is continuous, unbounded, and satisfies f(0) = 0. Show that f(R) =
[0,∞) (that is, the range of f is all of [0,∞)).

Proof. ∀M > 0, by Intermdiate Value Theorem (IVT), if f(m) = M , then ∀y ∈ [0,M ] ∃x s.t. f(x) =
y. By unboundness, ∀l, ∃L1 ∈ f(R) = [0,∞) s.t. Bl(0) ∩ {L} = ∅. Therefore, ∀n ∈ N, ∃Ln > n
s.t. Bn(0) ∩ {Ln} = ∅ =⇒ {0, Ln} ⊆ Range(f). Thus, by IVT, [0, Ln] ⊆ Range(f), and since
limn→∞ Ln = +∞, it =⇒ Range(f)=[0,∞)

4.5 Proving the Existence of a Point in a Functions Range
Show that there is some x ∈ R such that

√
x+

√
cos(sin(x)) = 2.

Proof. With consideration of IVT, if we can (1) Show f(x) =
√
x+

√
cos(sin(x)) = 2 is continuous

on some S, and (2) Show ∃a, b ∈ S s.t. f(a) < 2 < f(b), we will have proven ∃x s.t. f(x) = 2. To
show (1), let us recall the following two theorems: If f, g are continuous real-valued functions under
the common domain S, then f(g(x)) is also continuous. The second theorem is that under the same
conditions, f + g is also continuous.

We quickly prove
√
x is continuous under [0,∞) since if we require δ = min(1, ε(

√
a+ 1 +

√
a)),

then having |x− a| < δ =⇒ |
√
x−
√
a| < ε since |

√
x−
√
a| < ε ⇐⇒ |x− a| < ε · |

√
x+
√
a|, and

also
√
x is not defined on x < 0 (under R) and hence only the right-hand limit matters at 0 and√

0 := 0. Therefore,
√
x is continuous under [0,∞).

Therefore, letting f1(x) = x, f2(x) = sin(x), f3(x) = cos(x), g(x) =
√
x, and knowing all these

functions are continuous under [0,∞], we now know h(x) = g(f1(x)) + g(f3(f2(x))) is also continous
under [0,∞). Therefore, since h(0) =

√
0 +
√

1 = 1 < 2 and h(2π) =
√

2π + 1 > 2, by IVT we may
conclude ∃ x ∈ (0,∞) s.t. h(x) = 2.
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