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1 Limits

1.1 Evaluating a Classical Limit

Fualuate lim, o 1 — using arithmetic of limits.

n;il
We recall the “Squeeze Theorem”, which states: Let I be an interval having the point a as a limit
point. Let f, g and h be functions defined on I, except possibly at a itself. Suppose that for every
x € I not equal to a, we have:

g(x) < f(z) < h(z) and lim g(z) = lim h(z) = L

Tr—ra r—a
then, lim,_,, f(z) = L.

Thus, let {(n) = 1 and f(n) = 5, then lim, ;oo (1 — —7*5) = limn_)oo(g(n)) —limy, 00 f(n). We
now note if X = (n — 1)(n 1) then f(n) < f(n) + % and f( ) f(n) = & (¥ n > 1). Therefore
if we have h(z) = f(n) + § = 5 and g(z) = f(n) — § = n+1, then by the squeeze theorem
lim,, o f(n) = 0 since limn_mo g(n) = lim,,_,o h(n). Thus we may conclude:

lim (1 - nQ"_ 1> = lim £(n) =

n—oo n—0o0

Another approach to this problem would be as follows. We recall limn_)oo% = 0. Then, by the
standard arithmetic of limits:

]‘. n o0 L 1. n oo l
lim (1— —"—) = lim (1) — lim —— =1— ———roelnr 5 Hno (”)1
n—00 n?—1" n-ooo n—oo n? — 1 limy, 00 (n? — 1) 5% limy, 500 (1 — 77)
=1-= 0 —=1- 0 =1
1m0 (1) = 1My o0 (2) limyp o0 (2) 1—(0)(0)

1.2 Convergent Sequences

Define a real sequence (x,) by ©1 =0 and xp41 = ﬁ forn > 1. Show that (x,,) is convergent,
and find the limit.
Proof. Let us begin by noting the first 11 terms of z,, as x, = {0, %, %, %, %, 1—52, %, %, g, %, 151 e bl
Thus, a quick glance at this list looks like there might exist a direct formula for all z,,’s not dependant
on z,. We claim that:
Vn=2k+1,keN i dVn=2kkeN 2k =1 nd 0
n = Topy1 = ——, and Vn = Top = ————,and 11 =
3 s L2k+1 2k+1’ ) s L2k Ak 5 1
Our formulas cover x,Vn. Therefore, our plan is to perform induction on both formulas, to prove
correct description, then compute the limits.

For n = 2k + 1, we note wy(1)41 = % = 2(17%1 Next, we assume for n = 2k + 1, 29541 = 2k+1, then
forn=2k+1)+1=2k+3=n+2,
1 1 1 1 (k+1)
Tnt+2 = i = i = 1 T [ dhtd—2k—1y
4(1 - 4(17:3”)) 4(1 - 4(1_%“)) 4 — ((22.:11)) ( +k+1 ) 2(]‘6' + 1) +1



Which is our formula for xo(j41)41-

Now, for n = 2k + 1, we note xo(1) = % = 2(41()1;1. Next, we assume for n = 2k, xop = 2’2—;1, then for

n=2Fk+1)=2k+2=n+2,

1 1 1 1 1 2k+1)-1
,Z‘n+2 = = = = = =
A1~ 5rty) 4(1—4(1%22;1)) 4 (gg) (5D (%) A(k+1)

Which is our formula for wo(j41)-

Now, we want to show lim,, o x,, = lim,, s %ﬁ-l = lim,, o0 2’1—;1(< 00). We claim L = % is the
limit of all these sequences. To check, given € > 0, let N > i(% —2). Thus Vk > N,

k 11 k N 1 Ll _9 1 =2 1
S 4(6 ) - 4e :7_(7_6)26

1
1 2 T w1 ANl <2 f-p+172 L "2

since if 0 < £ <1, then 2=} < £. Now similarly but with N > 4,

2k—1 1, 1 2k—-1 _1 1 2(5)-1 1 1
= - = (€ =c¢

k202 4k 2 4N 2 4() 2

Therefore, x,, — % as n — oo.

1.3 A Nice Property of Limits

Let (zy,) be a sequence of real numbers that converges to x, and let a,b € R.

1. Show that, if x,, < b for every n € N, then x < b. What can you conclude if x,, < b for every
n € N?

2. Deduce from (1) that, if ©,, > a for every n € N, then x > a.

1. Proof. *** (Insufficient proof for 1., need to approach from different perspective, need to better
define the leap from lim, oo (2, — b,) <0 = 2 <b).

Let us define b, = b ¥n. Then lim, oz, — limy, 400 b, = limy,oo(xy, — by) < 0 since
Ty < byVn. Therefore, lim, o z, < lim, o b, = x < b. One might think that the added
information that z,, < b¥n — x < b. However, consider the case where x,, = 1—% and b = 1.
We note this sequence and b satisfy our conditions z,, < b¥n. However, lim,, oo x, = 1 = b.
Therefore, we must conclude that since z,, < b is stronger than z,, < b, but doesn’t add any
additional information for cases such as the one we just provided, that both conditions are
sufficiently equivalent for our conclusion about = < b.

O

2. Let us consider y,, = —x,, where lim, ..y, = y and a = —b. We note if z,, < b Vn, then
—yYp < —a = Y, > a VYn. Thus, by the completeness of R, we may conclude that V series
Yn — Y a8 N — 00 where y, > a VYn = y > a from our findings in (1).



2 Sets

2.1 Set Addition

Let S and T be nonempty subsets of R that are both bounded above. Prove that the set S+ T =
{s+tlseS,teT} hassup(S+T)=supS +supT.

Proof. Let us consider 4 cases:

e First, assume sg = sup(S),so € S and tg = sup(S),tp € T. Therefore, given ¢, and since
S+ T € R, the maximum value S + T could take would be s, + ¢, and similarly for a case
given s. Therefore, max(s +t) = sg + to = sup(S) + sup(T).

e Second, let us consider the case where both sup(S) sup(7T') ¢ S and T respectively. Therefore,
lim,_,gup(s) 8 = sup(S) = so, and similarly for ¢. Therefore, given ¢, and since S +T € R,
the sup(S + t) would be lim,_,gup(sy 8 +t = so + ¢, and similarly for a case given s. Thus,
sup(S +T) = sg + to = sup(S) + sup(T).

e The third and fourth cases are symmetric, therefore, WLOG, assume lim,_,q,p(5) s = sup(S) =
S0, S0 € S, but sup(T') = to and tg € T. We combine the previous two cases together to find
the supremum of S+ T given one variable being constant, which yields sup(S+7T) = so+to =
sup(S) + sup(T).

Since all possible cases give the case where sup(S + T') = sup(S) + sup(7T'), we can conclude what
we wanted to show. O

2.2 Proof of the Existence of a Convergence Sequence of elements of a
set to its Infimum

Prove that, if S is a nonempty subset of R that is bounded below, then there is a monotone decreasing
sequence of elements of S that converges to inf S.

Proof. Let us define B, () = {x € R: x < r}. Therefore, we have two cases:
e It > 0s.t. Vr < ¢, B.(inf(S)) = inf(S)
e Bt >0st. Vr <t B.(inf(S)) = inf(9)

In the first case, our condition implies inf(S) € S. To prove this assume inf(S) ¢ S. Therefore,
Ve > 0,3s € S s.t. |s —inf(S)| < e. This is a contradiction since our first case tells us for
some t > 0 3 any points other than possibly inf(S) in S and in an open ball around inf(S).
Thus, if the first condition holds, we define our monotone decreasing sequence as the constant
sequence z,, = inf(.5).

For the second case, if inf(S) € S, we let x,, = inf(.S) Vn. Otherwise, take r; =t where ¢t is the
first such radius where Vo € B, (inf(S)) to the right of inf(S) x € S, unless S = (inf(S), o)

in which we take r; = 1. For example, if S = UYX_,(m,m + %], then ry = % With rq,
we take r,1 1 = 2 Vn € N where 71 = ¢ as defined before. Then, we take the sequence

Yn = sup(B,, (inf(S))) which must converge to inf(.S) since our ball’s radius is shrinking to 0
around inf(S), and y, € S Vn, thus y, satisfies the conditions of a sequence we were looking
for.

O



3 Convergent Sums

3.1 Proving Absolute Convergence

Suppose that (a,) is a sequence of positive real numbers with lim, . || = s < 1. Show that

an

> ay is absolutely convergent. Deduce that > ”;L—T,L converges for every x € R.

Proof. Let us define r = 5'51. By the completeness of R and how s <1 = s < r < 1. It follows
that if lim,, o [+ = s < 1, then by definition, Ve > 0 3N € Nst. [ — 5| <eVn >N =

lans1] < 7lan| Vn > N, N € N. Therefore, |ayti| < rlanyi—1] < - - < rila,| Vi > 0,4 € N. As such,

o0 oo oo oo r
Z |ai :Z|GN+1‘| <Zri|a1v+1| = |&N+1|Z’I“l= \aNH\l_ < 0o since 7 < 1
i=N+1 i=1 i=1 i=1 "

Therefore, > a,, is absolutely convergent.
O

Proof. As for showing > % = > a, converges for every x € R. We prove that Vn > k, lim,
|“2] = s < 1 since Vn > k

k™ EF k k EF .k EF
o) (H)(r_F 1)-~-(5) < (ﬁ)(ﬁ) < (H) = ag
and Vm > n, a1 satisfies:
km+1 k fm m k.k
— —_— _) = < - ) =
(m+1)! m+1)(m!)<(m!) am_(k!) h
This — lim, o |a2:1| = s < 1. The fact that ) a, converges now follows from our previous
findings. ' O

4 Continuity

Let us first recall the Intermediate Value Theorem to be used heavily in the next few questions:

Theorem. 4.1: The Intermediate Value Theorem on R

If f is a real valued continuous function on [a, b] s.t. f(a) < f(b), then Yy € [f(a), f(b)], Tz €
[a,b] s.t. f(z)=y.

4.1 Proving Uniform Continuity Example

Show that the function f : [0,00) — R, f(x) = 22 is not uniformly continuous.

Proof. We recall that a function is uniformly continuous from S C R™ into R™ if Ve > 0 3§ > 0
st ||f(x) = f(a)|| < € when ||z — al| < §, x,a € S. Therefore, given ¢ = 1 suppose there exists



0 > 0 s.t. the 0 satisfies our definition of uniform continuity. However, if we consider the sequence
Tp =1, 0y =N+ =

1 1
|f(xn)_f(an)| = (n+ﬁ)2—n2 :24'_?

Therefore, V6 > 0, 3n € N sit. 1 < 6, which = |z, —a,| = [n—n—21| =1 <4, but
|f(zn) — fan)| > 2 > €. Thus, we can now conclude f on the domain S = [0, 00) is not uniformly
continuous.

O

4.2 Continuous and Differentiable Proof

Suppose that f : [0,00) — R is continuous on [0,00) and differentiable on (1,00) with bounded
derivative. Show that f is uniformly continuous. (HINT: split [0,00) into two pieces, on each of
which f is uniformly continuous, then explain why this implies that [ is uniformly continuous on
the whole of [0,00).)

Proof. We split the domain of [0, 00) into two sets:

1. We first consider f under the interval [0,1], which must be uniformly continuous since the
domain is compact and f is continuous (Theorem 5.5.9)

2. We now cousider f under the domain (1,00). Since f is continuous and has a bounded deriva-
tive under this domain, we know 3¢ € (1,00) s.t. f'(c) > % Vo1, 20 € (1,00) =
|f(z2) — f(z1)] < f'(c)|x2 — 21| and hence f under (1, 00) is Lipschitz. We now recall that all
Lipschitz functions are also uniformly continuous (Prop. 5.5.4) and hence f under (1,00) is

uniformly continuous.

Since we have shown uniform continuity under the two domains, we must show uniform continuity
under the union. Thus, choose d1,02 s.t. Yy € (1,00),2 € [0,1], having |1 —y| < 67 = |f(1) —

f(@)] <5 and fz —1] <&y = |f(y) — f(1)| < 5 and hence [f(y) — f(x)] < [f(1) = f(2)| +[f(y) —
f(1)| < § + § < e when 0 = max(dy,02). Therefore, all of [0, 00) is uniformly continuous. O

[N YNTTEN

4.3 Proving Uniform Continuity

Suppose that f : R — R is continuous and satisfies f(x+1) = f(x)Vx € R. Show that f is uniformly
continuous.

Proof. We first note under the domain [0,1], f will be uniformly continuous since under compact
domains, a continuous function is uniformly continuous (Theorem 5.5.9). Thus, Vz,y € R, WLOG
y > x we have |f(y) — f(2)| < [f(y) = fly=D)|+|fly=1) = fly=2)[+--+[f(y —=n) — f()] where
y—n<z+1,and hence |f(y) — f(x)] <|f(y —n) — f(z)| since |f(z) — f(z — 1)| = 0 by definition
of f.

Thus, we now note the uniform continuity we established under [0, 1] may be generalized to all of R
since once we note any |f(y) — f(z)| < |f(y — n) — f(z)| where y — n < x + 1, we may then push
both y —n and x down to elements of [0, 2]. since |f(y—n)— f(z)| = f(y—n—k)— f(x—k) Vk e N
and requiring . Thus, all that needs to be done is to extend our domain of uniform continuity by 1.
Quite trivially, we note our findings of why f under [1 —¢,2—¢€] (e € [0,1]) or [1,2] is also uniformly
continuous (by compactness and continuity), and hence f under [0, 2] is uniformly continuous. Thus,



if we require z — k €

[0, 1] we have all the tools to now conclude that R is uniformly continuous since
Vz,y € R |f(y) — f(z)

| = |f(22) — f(21)], 21,22 € [0,2] and 25 < 21 + 1.
O

4.4 Surjectivity

Suppose that f : R — [0,00) is continuous, unbounded, and satisfies f(0) = 0. Show that f(R) =
[0,00) (that is, the range of f is all of [0,00)).

Proof. VM > 0, by Intermdiate Value Theorem (IVT), if f(m) = M, then Vy € [0, M] 3z s.t. f(z) =
y. By unboundness, Vi, 3L; € f(R) = [0,00) s.t. B;(0) N {L} = 0. Therefore, Vn € N, 3L,, > n
st. Bp(0)n{L,} =0 = {0,L,} C Range(f). Thus, by IVT, [0,L,] C Range(f), and since
lim,, 00 Ly, = 400, it = Range(f)=[0, c0) O

4.5 Proving the Existence of a Point in a Functions Range
Show that there is some x € R such that \/x + /cos(sin(z)) = 2.

Proof. With consideration of IVT, if we can (1) Show f(z) = vz + y/cos(sin(z)) = 2 is continuous
on some S, and (2) Show Ja,b € S s.t. f(a) <2< f(b ), we will have proven Hac s.t. f(x) =2. To
show (1), let us recall the following two theorems: If f, g are continuous real-valued functions under
the common domain S, then f(g(x)) is also continuous. The second theorem is that under the same
conditions, f + g is also continuous.

We quickly prove /z is continuous under [0,c0) since if we require § = min(1, e(v/a+ 1+ v/a)),
then having |z —a| < 6 = |v/z — Va| < e since |z —Va| <e < |z —a| <€ |v/x + Val, and
also v/« is not defined on & < 0 (under R) and hence only the right-hand limit matters at 0 and
/0 := 0. Therefore, /7 is continuous under [0, o0).

Therefore, letting fi(z) = =z, fo(z) = sin(z), f3(z) = cos(z), g(r) = /z, and knowing all these
functions are continuous under [0, o], we now know h(z) = g(f1(x)) + g(f3(f2(x))) is also continous
under [0, 00). Therefore, since h(0) = 0 ++/1=1< 2 and h(27) = V27 + 1 > 2, by IVT we may
conclude 3 z € (0,00) s.t. h(x) =

O
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