Introductory Real Analysis: Interesting Problems

Jonathan Mostovoy - 1002142665 University of Toronto

September 28, 2016

Contents

1	Limits	2
	1.1 Evaluating a Classical Limit	2
	1.2 Convergent Sequences	2
	1.2 Convergent Sequences	3
2	Sets	4
	2.1 Set Addition	4
	2.2 Proof of the Existence of a Convergence Sequence of elements of a set to its Infimum	4
3	Convergent Sums	5
	3.1 Proving Absolute Convergence	5
4	Continuity	5
	4.1 Proving Uniform Continuity Example	5
	4.2 Continuous and Differentiable Proof	6
	4.3 Proving Uniform Continuity	6
	4.4 Surjectivity	7
	4.5 Proving the Existence of a Point in a Functions Range	

1 Limits

1.1 Evaluating a Classical Limit

Evaluate $\lim_{n\to\infty} 1 - \frac{n}{n^2-1}$ using arithmetic of limits.

We recall the "Squeeze Theorem", which states: Let I be an interval having the point a as a limit point. Let f, g and h be functions defined on I, except possibly at a itself. Suppose that for every $x \in I$ not equal to a, we have:

$$g(x) \le f(x) \le h(x)$$
 and $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$

then, $\lim_{x\to a} f(x) = L$.

Thus, let $\xi(n)=1$ and $f(n)=\frac{n}{n^2-1}$, then $\lim_{n\to\infty}(1-\frac{n}{n^2-1})=\lim_{n\to\infty}(\xi(n))-\lim_{n\to\infty}f(n)$. We now note if $\aleph=(n-1)(n+1)$, then $f(n)< f(n)+\frac{1}{\aleph}$ and $f(n)>f(n)-\frac{1}{\aleph}$ ($\forall~n>1$). Therefore if we have $h(x)=f(n)+\frac{1}{\aleph}=\frac{1}{n-1}$ and $g(x)=f(n)-\frac{1}{\aleph}=\frac{1}{n+1}$, then by the squeeze theorem $\lim_{n\to\infty}f(n)=0$ since $\lim_{n\to\infty}g(n)=\lim_{n\to\infty}h(n)$. Thus, we may conclude:

$$\lim_{n\to\infty}\left(1-\frac{n}{n^2-1}\right)=\lim_{n\to\infty}\xi(n)=1$$

Another approach to this problem would be as follows. We recall $\lim_{n\to\infty} \frac{1}{n} = 0$. Then, by the standard arithmetic of limits:

$$\lim_{n \to \infty} \left(1 - \frac{n}{n^2 - 1}\right) = \lim_{n \to \infty} \left(1\right) - \lim_{n \to \infty} \frac{n}{n^2 - 1} = 1 - \frac{\lim_{n \to \infty} n \frac{1}{n^2}}{\lim_{n \to \infty} (n^2 - 1) \frac{1}{n^2}} = 1 - \frac{\lim_{n \to \infty} \left(\frac{1}{n}\right)}{\lim_{n \to \infty} \left(1 - \frac{1}{n^2}\right)}$$

$$= 1 - \frac{0}{\lim_{n \to \infty} \left(1\right) - \lim_{n \to \infty} \left(\frac{1}{n}\right) \lim_{n \to \infty} \left(\frac{1}{n}\right)} = 1 - \frac{0}{1 - (0)(0)} = 1$$

1.2 Convergent Sequences

Define a real sequence (x_n) by $x_1 = 0$ and $x_{n+1} = \frac{1}{4(1-x_n)}$ for $n \ge 1$. Show that (x_n) is convergent, and find the limit.

Proof. Let us begin by noting the first 11 terms of x_n as $x_n = \{0, \frac{1}{4}, \frac{1}{3}, \frac{3}{8}, \frac{2}{5}, \frac{5}{12}, \frac{3}{7}, \frac{7}{16}, \frac{4}{9}, \frac{9}{10}, \frac{5}{11}, \dots\}$. Thus, a quick glance at this list looks like there might exist a direct formula for all x_n 's not dependant on x_n . We claim that:

$$\forall n = 2k+1, k \in \mathbb{N}, x_{2k+1} = \frac{k}{2k+1}, \text{ and } \forall n = 2k, k \in \mathbb{N}, x_{2k} = \frac{2k-1}{4k}, \text{and } x_1 = 0$$

Our formulas cover $x_n \forall n$. Therefore, our plan is to perform induction on both formulas, to prove correct description, then compute the limits.

For n = 2k + 1, we note $x_{2(1)+1} = \frac{1}{3} = \frac{1}{2(1)+1}$. Next, we assume for n = 2k + 1, $x_{2k+1} = \frac{k}{2k+1}$, then for n = 2(k+1) + 1 = 2k + 3 = n + 2,

$$x_{n+2} = \frac{1}{4(1 - \frac{1}{4(1 - x_n)})} = \frac{1}{4(1 - \frac{1}{4(1 - \frac{k}{2k+1})})} = \frac{1}{4 - (\frac{1}{\binom{k+1}{2k+1}})} = \frac{1}{\binom{4k+4-2k-1}{k+1}} = \frac{(k+1)}{2(k+1)+1}$$

Which is our formula for $x_{2(k+1)+1}$.

Now, for n = 2k + 1, we note $x_{2(1)} = \frac{1}{4} = \frac{2(1) - 1}{4(1)}$. Next, we assume for $n = 2k, x_{2k} = \frac{2k - 1}{4k}$, then for n = 2(k + 1) = 2k + 2 = n + 2,

$$x_{n+2} = \frac{1}{4(1 - \frac{1}{4(1 - x_n)})} = \frac{1}{4(1 - \frac{1}{4(1 - \frac{2k - 1}{4k})})} = \frac{1}{4 - (\frac{4k}{2k + 1})} = \frac{1}{(\frac{4k + 4}{2k + 1})} = \frac{1}{(\frac{4(k + 1)}{2(k + 1) - 1})} = \frac{2(k + 1) - 1}{4(k + 1)}$$

Which is our formula for $x_{2(k+1)}$.

Now, we want to show $\lim_{n\to\infty} x_n = \lim_{n\to\infty} \frac{k}{2k+1} = \lim_{n\to\infty} \frac{2k-1}{4k} (<\infty)$. We claim $L = \frac{1}{2}$ is the limit of all these sequences. To check, given $\epsilon > 0$, let $N > \frac{1}{4}(\frac{1}{\epsilon} - 2)$. Thus $\forall k > N$,

$$|\frac{k}{2k+1} - \frac{1}{2}| = \frac{1}{2} - \frac{k}{2k+1} \le \frac{1}{2} - \frac{N}{2N+1} < \frac{1}{2} - \frac{\frac{1}{4}(\frac{1}{\epsilon} - 2)}{(\frac{1}{\epsilon} - 1) + 1} = \frac{1}{2} - \frac{\frac{1-2\epsilon}{4\epsilon}}{\frac{1}{2\epsilon}} = \frac{1}{2} - (\frac{1}{2} - \epsilon) = \epsilon$$

since if $0 < \frac{x}{y} < 1$, then $\frac{x-1}{y-1} < \frac{x}{y}$. Now similarly but with $N > \frac{1}{4\epsilon}$,

$$|\frac{2k-1}{4k} - \frac{1}{2}| = \frac{1}{2} - \frac{2k-1}{4k} \le \frac{1}{2} - \frac{2N-1}{4N} < \frac{1}{2} - \frac{2(\frac{1}{4\epsilon}) - 1}{4(\frac{1}{4\epsilon})} = \frac{1}{2} - (\frac{1}{2} - \epsilon) = \epsilon$$

Therefore, $x_n \to \frac{1}{2}$ as $n \to \infty$.

1.3 A Nice Property of Limits

Let (x_n) be a sequence of real numbers that converges to x, and let $a, b \in \mathbb{R}$.

- 1. Show that, if $x_n \leq b$ for every $n \in \mathbb{N}$, then $x \leq b$. What can you conclude if $x_n < b$ for every $n \in \mathbb{N}$?
- 2. Deduce from (1) that, if $x_n \geq a$ for every $n \in \mathbb{N}$, then $x \geq a$.
- 1. Proof. *** (Insufficient proof for 1., need to approach from different perspective, need to better define the leap from $\lim_{n\to\infty}(x_n-b_n)\leq 0\implies x\leq b$).

Let us define $b_n = b \ \forall n$. Then $\lim_{n \to \infty} x_n - \lim_{n \to \infty} b_n = \lim_{n \to \infty} (x_n - b_n) \le 0$ since $x_n \le b_n \forall n$. Therefore, $\lim_{n \to \infty} x_n \le \lim_{n \to \infty} b_n \equiv x \le b$. One might think that the added information that $x_n < b \forall n \implies x < b$. However, consider the case where $x_n = 1 - \frac{1}{n}$ and b = 1. We note this sequence and b satisfy our conditions $x_n < b \forall n$. However, $\lim_{n \to \infty} x_n = 1 = b$. Therefore, we must conclude that since $x_n < b$ is stronger than $x_n \le b$, but doesn't add any additional information for cases such as the one we just provided, that both conditions are sufficiently equivalent for our conclusion about $x \le b$.

2. Let us consider $y_n = -x_n$, where $\lim_{n \to \infty} y_n = y$ and a = -b. We note if $x_n \le b \ \forall n$, then $-y_n \le -a \implies y_n \ge a \ \forall n$. Thus, by the completeness of \mathbb{R} , we may conclude that \forall series $y_n \to y$ as $n \to \infty$ where $y_n \ge a \ \forall n \implies y \ge a$ from our findings in (1).

3

2 Sets

2.1 Set Addition

Let S and T be nonempty subsets of \mathbb{R} that are both bounded above. Prove that the set $S+T=\{s+t|s\in S,t\in T\}$ has $\sup(S+T)=\sup S+\sup T$.

Proof. Let us consider 4 cases:

- First, assume $s_0 = \sup(S), s_0 \in S$ and $t_0 = \sup(S), t_0 \in T$. Therefore, given t, and since $S + T \in \mathbb{R}$, the maximum value S + T could take would be $s_o + t$, and similarly for a case given s. Therefore, $\max(s + t) = s_0 + t_0 \equiv \sup(S) + \sup(T)$.
- Second, let us consider the case where both $\sup(S) \sup(T) \notin S$ and T respectively. Therefore, $\lim_{s \to \sup(S)} s = \sup(S) = s_0$, and similarly for t. Therefore, given t, and since $S + T \in \mathbb{R}$, the $\sup(S + t)$ would be $\lim_{s \to \sup(S)} s + t = s_0 + t$, and similarly for a case given s. Thus, $\sup(S + T) = s_0 + t_0 \equiv \sup(S) + \sup(T)$.
- The third and fourth cases are symmetric, therefore, WLOG, assume $\lim_{s\to \sup(S)} s = \sup(S) = s_0, s_0 \notin S$, but $\sup(T) = t_0$ and $t_0 \in T$. We combine the previous two cases together to find the supremum of S+T given one variable being constant, which yields $\sup(S+T) = s_0 + t_0 = \sup(S) + \sup(T)$.

Since all possible cases give the case where $\sup(S+T)=\sup(S)+\sup(T)$, we can conclude what we wanted to show.

2.2 Proof of the Existence of a Convergence Sequence of elements of a set to its Infimum

Prove that, if S is a nonempty subset of \mathbb{R} that is bounded below, then there is a monotone decreasing sequence of elements of S that converges to $\inf S$.

Proof. Let us define $B_r(x) = \{x \in \mathbb{R} : x < r\}$. Therefore, we have two cases:

- $\exists t > 0 \text{ s.t. } \forall r < t, B_r(\inf(S)) = \inf(S)$
- $\nexists t > 0$ s.t. $\forall r < t, B_r(\inf(S)) = \inf(S)$

In the first case, our condition implies $\inf(S) \in S$. To prove this assume $\inf(S) \notin S$. Therefore, $\forall \epsilon > 0, \exists s \in S \text{ s.t. } |s - \inf(S)| < \epsilon$. This is a contradiction since our first case tells us for some $t > 0 \not\equiv$ any points other than possibly $\inf(S)$ in S and in an open ball around $\inf(S)$. Thus, if the first condition holds, we define our monotone decreasing sequence as the constant sequence $x_n = \inf(S)$.

For the second case, if $\inf(S) \in S$, we let $x_n = \inf(S) \ \forall n$. Otherwise, take $r_1 = t$ where t is the first such radius where $\forall x \in B_{r_1}(\inf(S))$ to the right of $\inf(S) \ x \in S$, unless $S = (\inf(S), \infty)$ in which we take $r_1 = 1$. For example, if $S = \bigcup_{m=0}^{\infty} (m, m + \frac{1}{2}]$, then $r_1 = \frac{1}{2}$. With r_1 , we take $r_{n+1} = \frac{r_n}{2} \ \forall n \in \mathbb{N}$ where $r_1 = t$ as defined before. Then, we take the sequence $y_n = \sup(B_{r_n}(\inf(S)))$ which must converge to $\inf(S)$ since our ball's radius is shrinking to 0 around $\inf(S)$, and $y_n \in S \ \forall n$, thus y_n satisfies the conditions of a sequence we were looking for.

3 Convergent Sums

3.1 Proving Absolute Convergence

Suppose that (a_n) is a sequence of positive real numbers with $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = s < 1$. Show that $\sum a_n$ is absolutely convergent. Deduce that $\sum \frac{x^n}{n!}$ converges for every $x \in \mathbb{R}$.

Proof. Let us define $r=\frac{s+1}{2}$. By the completeness of $\mathbb R$ and how $s<1\Longrightarrow s< r<1$. It follows that if $\lim_{n\to\infty}|\frac{a_{n+1}}{a_n}|=s<1$, then by definition, $\forall \epsilon>0$ $\exists N\in\mathbb N$ s.t. $|\frac{a_{n+1}}{a_n}-s|<\epsilon$ $\forall n>N\Longrightarrow |a_{n+1}|< r|a_n|$ $\forall n>N,N\in\mathbb N$. Therefore, $|a_{n+i}|< r|a_{n+i-1}|<\cdots< r^i|a_n|$ $\forall i>0,i\in\mathbb N$. As such,

$$\sum_{i=N+1}^{\infty} |a_i| = \sum_{i=1}^{\infty} |a_{N+i}| < \sum_{i=1}^{\infty} r^i |a_{N+1}| = |a_{N+1}| \sum_{i=1}^{\infty} r^i = |a_{N+1}| \frac{r}{1-r} < \infty \text{ since } r < 1$$

Therefore, $\sum a_n$ is absolutely convergent.

Proof. As for showing $\sum \frac{x^n}{n!} = \sum a_n$ converges for every $x \in \mathbb{R}$. We prove that $\forall n > k$, $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = s < 1$ since $\forall n > k$

$$\frac{k^n}{(n)!} = (\frac{k^k}{k!})(\frac{k}{k+1})\dots(\frac{k}{n}) < (\frac{k^k}{k!})(\frac{k}{n}) < (\frac{k^k}{k!}) = a_k$$

and $\forall m \geq n, a_{m+1}$ satisfies:

$$\frac{k^{m+1}}{(m+1)!} = (\frac{k}{m+1})(\frac{k^m}{m!}) < (\frac{k^m}{m!}) = a_m \le (\frac{k^k}{k!}) = a_k$$

This $\implies \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = s < 1$. The fact that $\sum a_n$ converges now follows from our previous findings.

4 Continuity

Let us first recall the Intermediate Value Theorem to be used heavily in the next few questions:

Theorem. 4.1: The Intermediate Value Theorem on \mathbb{R}

If f is a real valued continuous function on [a, b] s.t. f(a) < f(b), then $\forall y \in [f(a), f(b)], \exists x \in [a, b]$ s.t. f(x) = y.

4.1 Proving Uniform Continuity Example

Show that the function $f:[0,\infty)\to\mathbb{R}$, $f(x)=x^2$ is not uniformly continuous.

Proof. We recall that a function is uniformly continuous from $S \subseteq \mathbb{R}^n$ into \mathbb{R}^m if $\forall \epsilon > 0 \ \exists \delta > 0$ s.t. $||f(\boldsymbol{x}) - f(\boldsymbol{a})|| < \epsilon$ when $||\boldsymbol{x} - \boldsymbol{a}|| < \delta$, $\boldsymbol{x}, \boldsymbol{a} \in S$. Therefore, given $\epsilon = 1$ suppose there exists

 $\delta > 0$ s.t. the δ satisfies our definition of uniform continuity. However, if we consider the sequence $x_n = n, a_n = n + \frac{1}{n}$:

$$|f(x_n) - f(a_n)| = (n + \frac{1}{n})^2 - n^2 = 2 + \frac{1}{n^2}$$

Therefore, $\forall \delta > 0$, $\exists n \in \mathbb{N}$ s.t. $\frac{1}{n} < \delta$, which $\Longrightarrow |x_n - a_n| = |n - n - \frac{1}{n}| = \frac{1}{n} < \delta$, but $|f(x_n) - f(a_n)| > 2 > \epsilon$. Thus, we can now conclude f on the domain $S = [0, \infty)$ is not uniformly continuous.

4.2 Continuous and Differentiable Proof

Suppose that $f:[0,\infty)\to\mathbb{R}$ is continuous on $[0,\infty)$ and differentiable on $(1,\infty)$ with bounded derivative. Show that f is uniformly continuous. (HINT: split $[0,\infty)$ into two pieces, on each of which f is uniformly continuous, then explain why this implies that f is uniformly continuous on the whole of $[0,\infty)$.)

Proof. We split the domain of $[0, \infty)$ into two sets:

- 1. We first consider f under the interval [0,1], which must be uniformly continuous since the domain is compact and f is continuous (Theorem 5.5.9)
- 2. We now consider f under the domain $(1,\infty)$. Since f is continuous and has a bounded derivative under this domain, we know $\exists c \in (1,\infty)$ s.t. $f'(c) \geq \frac{|f(x_2) f(x_1)|}{|x_2 x_1|} \ \forall x_1, x_2 \in (1,\infty) \Longrightarrow |f(x_2) f(x_1)| \leq f'(c)|x_2 x_1|$ and hence f under $(1,\infty)$ is Lipschitz. We now recall that all Lipschitz functions are also uniformly continuous (Prop. 5.5.4) and hence f under $(1,\infty)$ is uniformly continuous.

Since we have shown uniform continuity under the two domains, we must show uniform continuity under the union. Thus, choose δ_1, δ_2 s.t. $\forall y \in (1, \infty), x \in [0, 1]$, having $|1 - y| < \delta_1 \implies |f(1) - f(x)| < \frac{\epsilon}{2}$ and $|x - 1| < \delta_2 \implies |f(y) - f(1)| < \frac{\epsilon}{2}$ and hence $|f(y) - f(x)| \le |f(1) - f(x)| + |f(y) - f(1)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon$ when $\delta = \max(\delta_1, \delta_2)$. Therefore, all of $[0, \infty)$ is uniformly continuous.

4.3 Proving Uniform Continuity

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous and satisfies $f(x+1) = f(x) \forall x \in \mathbb{R}$. Show that f is uniformly continuous.

Proof. We first note under the domain [0,1], f will be uniformly continuous since under compact domains, a continuous function is uniformly continuous (Theorem 5.5.9). Thus, $\forall x,y \in \mathbb{R}$, WLOG y>x we have $|f(y)-f(x)| \leq |f(y)-f(y-1)|+|f(y-1)-f(y-2)|+\cdots+|f(y-n)-f(x)|$ where $y-n \leq x+1$, and hence $|f(y)-f(x)| \leq |f(y-n)-f(x)|$ since |f(z)-f(z-1)|=0 by definition of f.

Thus, we now note the uniform continuity we established under [0,1] may be generalized to all of $\mathbb R$ since once we note any $|f(y)-f(x)| \leq |f(y-n)-f(x)|$ where $y-n \leq x+1$, we may then push both y-n and x down to elements of [0,2]. since $|f(y-n)-f(x)|=f(y-n-k)-f(x-k) \ \forall k \in \mathbb N$ and requiring . Thus, all that needs to be done is to extend our domain of uniform continuity by 1. Quite trivially, we note our findings of why f under $[1-\epsilon,2-\epsilon]$ ($\epsilon\in[0,1]$) or [1,2] is also uniformly continuous (by compactness and continuity), and hence f under [0,2] is uniformly continuous. Thus,

if we require $x - k \in [0, 1]$ we have all the tools to now conclude that \mathbb{R} is uniformly continuous since $\forall x, y \in \mathbb{R} |f(y) - f(x)| \equiv |f(z_2) - f(z_1)|, z_1, z_2 \in [0, 2]$ and $z_2 \leq z_1 + 1$.

4.4 Surjectivity

Suppose that $f: \mathbb{R} \to [0, \infty)$ is continuous, unbounded, and satisfies f(0) = 0. Show that $f(\mathbb{R}) = [0, \infty)$ (that is, the range of f is all of $[0, \infty)$).

Proof. $\forall M > 0$, by Intermdiate Value Theorem (IVT), if f(m) = M, then $\forall y \in [0, M] \exists x \text{ s.t. } f(x) = y$. By unboundness, $\forall l, \exists L_1 \in f(\mathbb{R}) = [0, \infty) \text{ s.t. } B_l(0) \cap \{L\} = \emptyset$. Therefore, $\forall n \in \mathbb{N}, \exists L_n > n \text{ s.t. } B_n(0) \cap \{L_n\} = \emptyset \implies \{0, L_n\} \subseteq \text{Range}(f)$. Thus, by IVT, $[0, L_n] \subseteq \text{Range}(f)$, and since $\lim_{n \to \infty} L_n = +\infty$, it $\implies \text{Range}(f) = [0, \infty)$

4.5 Proving the Existence of a Point in a Functions Range

Show that there is some $x \in \mathbb{R}$ such that $\sqrt{x} + \sqrt{\cos(\sin(x))} = 2$.

Proof. With consideration of IVT, if we can (1) Show $f(x) = \sqrt{x} + \sqrt{\cos(\sin(x))} = 2$ is continuous on some S, and (2) Show $\exists a,b \in S$ s.t. f(a) < 2 < f(b), we will have proven $\exists x$ s.t. f(x) = 2. To show (1), let us recall the following two theorems: If f,g are continuous real-valued functions under the common domain S, then f(g(x)) is also continuous. The second theorem is that under the same conditions, f+g is also continuous.

We quickly prove \sqrt{x} is continuous under $[0,\infty)$ since if we require $\delta = \min(1,\ \varepsilon(\sqrt{a+1}+\sqrt{a}))$, then having $|x-a|<\delta \implies |\sqrt{x}-\sqrt{a}|<\epsilon$ since $|\sqrt{x}-\sqrt{a}|<\epsilon \iff |x-a|<\epsilon\cdot |\sqrt{x}+\sqrt{a}|$, and also \sqrt{x} is not defined on x<0 (under $\mathbb R$) and hence only the right-hand limit matters at 0 and $\sqrt{0}:=0$. Therefore, \sqrt{x} is continuous under $[0,\infty)$.

Therefore, letting $f_1(x) = x$, $f_2(x) = \sin(x)$, $f_3(x) = \cos(x)$, $g(x) = \sqrt{x}$, and knowing all these functions are continuous under $[0, \infty]$, we now know $h(x) = g(f_1(x)) + g(f_3(f_2(x)))$ is also continuous under $[0, \infty)$. Therefore, since $h(0) = \sqrt{0} + \sqrt{1} = 1 < 2$ and $h(2\pi) = \sqrt{2\pi} + 1 > 2$, by IVT we may conclude $\exists x \in (0, \infty)$ s.t. h(x) = 2.